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 Abstract 
 

In this study we examine different methodologies to estimate 
earnings. More specifically, we evaluate the viability of Genetic 
Programming as both a forecasting model estimator and a forecast-
combining methodology. When we compare the performance of 
traditional mechanical forecasting (ARIMA) models and models 
developed using Genetic Programming we observe that Genetic 
Programming can be used to create time-series models for quarterly 
earnings as accurate as the traditional linear models. Genetic 
Programming can also effectively combine forecasts. However, 
Genetic Programming's forecast combinations are sometimes unable 
to improve on Value Line.  Moreover, simple averaging of forecasts 
results in better predictive accuracy than Genetic Programming-
combining of forecasts. Hence, as implemented in this study, 
Genetic Programming is not superior to traditional methodologies in 
either forecasting or forecast combining of quarterly earnings. 
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Resumen 
 

En este estudio examinamos distintas metodologias para estimar 
beneficios. En concreto, analizamos la viabilidad de la 
programación genética como modelo de estimación y también como 
método para combinar distintos modelos de predicción. En nuestro 
estudio encontramos que la programación genética es al menos tan 
eficaz como los métodos tradicionales de estimación de series de 
tiempo. Sin embargo las predicciones de nuestros algoritmos 
genéticos no predicen mejor los beneficios que el Value Line. 
Además, los modelos de predicción combinados utilizando 
programación genética no son superiores a un simple promedio de 
los estimados de los modelos. De manera, que en nuestro estudio la 
programación genética no resulta superior a las metodologías 
tradicionales.  
 
Palabras claves: Programación genética, predicción de beneficios, 

combinación de predicciones. 
 
 

1. Introduction 
 
There is often a need in accounting research for a proxy of the 
markets’ expectation of earnings.  Quarterly earnings forecasts from 
both analysts and mechanical models have been traditionally used as 
such proxies. Mechanical models include ARIMA models 
introduced by Foster (1977), Watts (1975)-Griffin (1977), Brown 
and Rozeff (1979) and individually identified models. Lee and Chen 
(1990) introduce models that account for structural change in a 
firm's quarterly earnings series.  Mechanical models, although easy 
to implement, have unfortunately never been able to consistently 
beat analysts' forecasts, of which Value Line (VL) is an example.  
However, Lee and Chen (1990) show that both Value Line and 
ARIMA models have marginal earnings forecasting power.  Thus, a 
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combination of them might prove better than each individual 
forecast.  Indeed, Newbold, Zumwalt and Kannan (1987) show that 
when for a group of utilities the Value Line forecast is combined 
with the Brown-Rozeff forecast, a forecast error smaller than either's 
is obtained.  Newbold et al. use simple regression to combine their 
forecasts. Lately, with the advent of new nonlinear computing 
paradigms, other researchers have turned to these nonlinear methods 
for forecast combining. Donaldson and Kamstra (1996) use 
Artificial Neural Networks (ANNs) to combine forecasts of stock 
market volatility for several countries. They show that in that 
context, forecasts combined using ANNs are superior to those 
combined using traditional linear procedures. Hibon and Evgeniou 
(2005) by using simulations show that the accuracy of forecast 
combinations is significantly better and less variable than that of 
individual forecasts. Also, Terui and Van Dijk (2002) show that 
combined forecast performed particularly well for macroeconomic 
time series with time varying coefficients. Finally, Yang (2004) 
provides the theoretical basis for the combined forecast superiority 
over their individual components. In this study we evaluate the 
viability of Genetic Programming, a nonlinear methodology, as (1) a 
forecasting model estimator and (2) a forecast-combining 
methodology. When we compare the performance of traditional 
mechanical forecasting (ARIMA) models and models developed 
using Genetic Programming we observe that Genetic Programming 
can be used to create time-series models for quarterly earnings as 
accurate as the traditional linear models. Genetic Programming can 
also effectively combine forecasts. However, unlike Donaldson and 
Kamstra and Newbold et al., Genetic Programming's forecast 
combinations are sometimes unable to improve on Value Line, their 
most accurate component.  Moreover, simple averaging of forecasts 
results in better predictive accuracy than Genetic Programming-
combining of forecasts. Hence, as implemented in this study, 
Genetic Programming is not superior to traditional methodologies in 
either forecasting or forecast combining of quarterly earnings. In 
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section 2 we give a brief summary of quarterly earnings forecasting 
and forecast combining research. In section 3 we present the data 
used in the study. Section 4 presents our methodology.  Section 5 
presents results. Section 6 concludes. 
 
 
2. Quarterly earnings forecasting  

and forecast-combining research 
 

Research on the time-series properties of quarterly earnings dates 
back to the 1970's. The core models for quarterly earnings processes 
are those proposed in Foster (1977), Watts (1975) - Griffin (1977) 
and Brown and Rozeff (1979). In Box-Jenkins notation, where 
ARIMA models are described in the form (p,d,q)x(P,D,Q), the 
Foster model is (1,0,0)x(0,1,0) plus a constant, the Watts-Griffin 
model (0,1,1)x(0,l,l), and the Brown-Rozeff model (1,0,0)x(0,l,l).  
Evidence has been presented in favor of all three models. Their 
forecasting accuracy, though not as good as Value Line's, remained 
unbeaten until Lee and Chen (1990) introduced models incorpora-
ting structural change information. However, the Lee and Chen 
models were not able to make better forecasts than Value Line. 

Research in forecast combining dates back to the late 1960's 
with the publication of Reid (1968,1969) and Bates and Granger 
(1969). Forecast combining research is extensive. It repeatedly 
shows that combinations of forecasts are more accurate than 
individual forecasts. Most combination techniques are linear and 
involve the averaging of individual forecasts. The simplest type of 
averaging is equally-weighted averaging. It is the usual benchmark 
against which other methods are evaluated. Many other weighting 
schemes have also been proposed. To mention a few, Doyle and 
Fenwick (1976), proposed historical weightings. Bunn and Kappos 
(1982) assigned weights according to a function of the historical 
records of the most accurate forecast in all previous periods. Gupta 
and Wilton (1987) introduced the odds-matrix method of computing 
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weights. Holmen (1987) used the constrained linear combination 
method to combine forecasts of short-term earnings. Russell and 
Adam (1987) proposed weightings based on actual forecast errors.  
Non-averaging combining techniques include constrained multiple 
objective linear programming, unconstrained multiple objective 
linear programming, and artificial neural networks. Of particular 
interest to us is Newbold et al., (1987), who use OLS to combine 
pairs of forecasts for a set of utilities’ quarterly earnings series. All 
forecast pairs include a Value Line forecast. The other member of 
the pair is one of several mechanical models. Among the models 
considered are the Watts-Griffin and Brown-Rozeff ARIMA 
models. Newbold et al., find that combining Brown-Rozeff with 
Value Line gives the most accurate forecasts. The combined Value 
Line-Brown-Rozeff forecasts are more accurate than either 
individual forecast.  Also of interest to us is the Donaldson and 
Kamstra (1996) study.  Donaldson and Kamstra argue that non-
linear combining methodologies may sometimes fare better than 
linear techniques.  They successfully use artificial neural networks 
to combine stock market volatility forecasts. The ANNs' forecast 
combinations are more accurate than those obtained by several 
averaging methods, including equal-weighted averaging and OLS. 
These results motivated us to consider combining Value Line 
forecasts with those of different ARIMA models. However, like 
Donaldson and Kamstra, we chose a non-linear combining 
technique.  Specifically, we chose to evaluate Genetic Programming 
as both a forecasting and a forecast-combining methodology.  

 
 
3.      Data 
 
We used all the utilities from the Lee and Chen (1990) study which 
satisfied the following two requirements: 
 
i) A Value Line forecast was available for our required time 

periods. 
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ii) Earnings per share before extraordinary items 
(COMPUSTAT item # 19) was available for our required 
time periods. 

 
Earnings per share (EPS) values were available for our firms from 
the first quarter of 1963 (1963Ql) onwards. Value Line forecasts 
were available from 1968Q3 onwards. We used all available EPS 
data for estimation of the ARIMA models under consideration but 
truncated the data sets used to estimate the Genetic Programming 
models to 1968Q3 onwards to match the availability of Value Line 
data. Table 1 presents the firms used in our study. 
 
 

Table 1 
Firms in the study 

 
 NAME INDIVIDUAL ARIMA PROCESS 

1 Carolina Power & Light       (0,0,1)(0,1,1)4 
2 Central Hudson Gas & Electric    (0,0,1)(0,1,1)4 
3 Cincinnati Gas & Electric    (0,0,1)(0,1,1)4 
4 Cleveland Electric Illumination    (0,0,1)(0,1,0)4 
5 Dayton Power & Light Inc. (0,0,1)(0,1,1)4 
6 Detroit Edison Co.            (0,0,4)(0,0,0)4 
7 Idaho Power Co               (4,0,0)(0,0,0)4 
8 Interstate Power Co          (0,0,0)(0,1,1)4 
9 Long island Lighting         (0,0,4)(0,1,0)4 
10 New York state Electric & Gas    (0,0,0)(1,0,0)4 
11 Niagara Mohawk Power         (2,0,0)(1,0,0)4 
12 Northern states Power/MN     (0,0,1)(0,1,1)4 
13 Pacific Gas & Electric       (0,0,0)(1,0,0)4 
14 Potomac Electric Power       (0,0,0)(0,1,1)4 
15 San Diego Gas & Electric      (4,0,0)(0,0,0)4 
16 Union Electric co            (0,0,1)(0,1,1)4 
17 Washington Water Power (0,0,1)(0,1,1)4 

The utility firms used in the study are a subset of the firms used in Lee and Chen 
(1990 for which we found all required information. When using an individually 
identified ARIMA model, we used the one identified by Lee and Chen in their 
study. 
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4.      Methodology 
 
We assessed the forecasting performance of ten different models.  
These are presented in Table 2.  Model 1 is the Value Line forecast.  
Models 2-5 are traditional ARIMA models.  Model 6 is “Genetic 
Programming ARIMA”.  Its dependent variables are lagged values 
of EPS and lagged errors.  Model 7 (VIBFG) combines the forecasts 
of Value Line, and the individually identified, Brown & Rozeff, 
Foster, and Watts-Griffin models.  Model 8 is an enhanced version 
of model 7.  Lagged values of EPS and lagged errors are added to 
the set of model 7 independent variables. Model 9 combines the 
forecasts of model X (Genetic Programming ARIMA) with the 
traditional forecasts.  Model 10 is an enhanced model 9 which again 
includes lagged EPS values and lagged errors. The operations we 
allowed in the models constructed by the Genetic Programming 
algorithm included not only the traditional arithmetic operators of 
the linear ARIMA models but also three averaging operators. These 
are presented in Table 3. 

Each model we estimated was in reality a collection of 
models estimated with data determined by a rolling window.  In pre-
specified model estimation (ARIMA) only the model parameters 
change as the window rolls forward in time. In Genetic 
Programming estimation, the entire functional form changes. We 
made the first Genetic Programming estimation using the quarterly 
earnings series for the period 1968Q3 to 1980Q4.  We then collected 
1, 2 and 3 period forecasts for 1981Ql - 1981Q3, the associated 
validation period.  We next shifted the estimation/validation window 
over by one quarter and repeated this process. Table 4 presents 
beginning and ending validation/testing periods. For each period, the 
dependent variable was the quarterly EPS value for the period.  
Depending on the model, the independent variables were lagged 
EPS values, lagged model errors, the one-period-ahead Value Line 
forecast, and values given by the different ARIMA models used in 
the study.  
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Table 2 
Forecasting Models 

 
 MODEL NAME MODEL COMPONENTS DESCRIPTION REFERENCE 

1 VL Multiple Black Box Value Line 
2 INDIV Lagged Xi,ai ARIMA Lee and Chen (1990) 
3 BR Lagged Xi,ai ARIMA Brown and Rozeff (1979) 
4 FOSTER Lagged Xi ARIMA Foster (1977) 
5 GW Lagged Xi,ai ARIMA Watts (1975) 

Griffin(1977) 
6 X Lagged Xi,ai Pure GP ARIMA This study 
7 VIBFG VL, INDIV, BR,FOSTER, G GP Forecast Combination This study 
8 VIBFGX VL,INDIV,BR, 

FOSTER,G,  
lagged Xi,aI 

Enhanced GP  
Forecast Combination 

This study 

9 GPVIBFG Model 5, VL, INDIV, BR, 
FOSTER, G 

GP Forecast Combination This study 

10 GPVIBFGX Model 5, VL, INDIV, BR, 
FOSTER, G, lagged Xi,ai  

Enhanced GP Forecast 
 Combination 

This study 

Traditional models evaluated in the study in the study were financial analyst forecasts (Value Line - 
VL) and several time series models (Individually identified models – INDIV, Brown and Rozeff – BR, 
Foster – FOSTER, and Griffin-Watts – GW). Our contribution was to evaluate a GP ARIMA model 
and several GP forecast-combining and  “enhanced” forecast-combining models. 

 
 

Table 3 
Formula Operations  

 
OPERATION DESCRIPTION 

+ Addition 
- Subtraction 
× Multiplication 
% Protected Division : x%y = x/y if y ≠ 0, 1 

otherwise 
avg2 

2
yxy)avg2(x, +

=  

gavg2 yxy)gavg2(x, ×=  

gavg3 3 zyxz)y,gavg3(x, ××=  
Basic set of operations available for the construction of Genetic 
Programming models. 
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 Table 4 
ARIMA Training/Validation/Test Dates 

 
 TRAINING PERIOD VALIDATION PERIOD TESTING PERIOD 
First Validation Estimation 1963 Q1-1980Q4 1981Q1-1981Q3 NA 
Last Validation Estimation 1964Q4-1982Q3 1982Q4 NA 
First Testing Estimation 1965Q1-1982Q4 NA 1983Q1-1983Q3 
Last Testing Estimation 1966Q4-1984Q3 NA 1984Q4-1985Q2 

This table describes the time spans of the different data sets used in developing and testing our 
formulas. Training data sets were truncated to begin in the third quarter of 1968 to match the 
availability of Value Line data. 

 
The Genetic Programming algorithm can be run under different 
conditions or parameters. We did not know what parameters were 
best for evolving good forecasting models.  Therefore, we evolved 
formulas using an in-sample period using a variety of parameters.  
We then chose as “best” parameters those that resulted in the 
smallest forecasting errors in a validation period.  Finally, we rolled 
the time windows forward and used these parameters to estimate 
models and produce forecasts in a test period. We varied four 
algorithm parameters: the method of selecting “parent” formulas for 
reproduction, the population size, the number of generations for 
which the formulas were evolved, and the weightings assigned to the 
estimation errors.  These parameters appear in Table 5. 

We considered forecasting horizons separately when 
choosing parameters. For each forecasting horizon (one, two or three 
periods ahead) we chose the best training parameters in one of two 
ways: 

 
i) We averaged the validation-period errors for all firms and 

then picked the parameters that led to the smallest average 
error.  We call this the GLOB method. 

ii) For each firm we picked the firm-specific parameters that 
resulted in the minimum errors in the validation period.  We 
call this the INDIV method. 
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Whenever forecasting for a specific horizon in the out-of-sample 
(test) period we would the estimate Genetic Programming model 
using the best parameters for the horizon. 
 

Table 5 
GP Training Parameter Variations 

 
1. Selection Method 1. Best 

2. Fitness 
Method of selecting “parent” models for potential 
combination by the crossover operator. 

2. Population Size 1. 100 
2. 500 
3. 1000 

Size of model population. 

3. Generations 1. 2 
2. 5 
3. 10 

Number of populations successively evolved using 
the selection-crossover operators.   

4. Error weights 1. Equal 
2. Front 

Method of weighting the errors.  Frontal weighting 
gives higher weights to errors made in more recent 
forecasts. 

We developed formulas using different parameters and chose the parameters that resulted in best 
forecasting performance in a validation period.  We then used these parameters to develop new 
formulas and tested their forecasting power in an out-of-sample period.  

 
We performed the study twice. The first time our Genetic 
Programming estimations involved minimizing sum of squared 
errors. The second time we minimized the sum of absolute errors.  
Sum of squared errors is the criterion traditionally minimized in 
most statistical estimations. A sample model estimated by the 
algorithm is shown in Equation 1. 
 

Xt= gavg3( Xt-2 ,Xt-1, gavg3(Xt-4,0.21444,Xt-1) (1) 
 
 
5.     Results 
 
Table 6 presents the average out-of-sample percentage errors made 
by all models. Value Line has the smallest errors of the non-
combining models.  We can also see that the performance of Genetic 
Programming ARIMA (model X) is comparable but not superior to 
that of the linear ARIMA models. Some Genetic Programming 
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combination methods also manage to improve on the component 
forecasts for certain forecasting horizons. However, a simple 
arithmetic average of the traditional methods always dominates the 
Genetic Programming combination forecasts.  
  We also considered the possibility that Genetic Programming 
might work for some types of time series better than for others.  
More specifically, we divided our firms into high and low earnings-
volatility groups.  Table 6 also presents the forecast errors the 
models made for both groups of firms. One can see that the 
performance of Genetic Programming relative to the other 
methodologies does not seem to be a function of  volatility. 

Like Lee and Chen we also looked at the marginal 
forecasting power of the mechanical forecasting models versus 
Value Line by estimating the following regression 

 
 it ffZ εββα +++= vlvlmodelmodel   (2) 

 
where Zt is actual earnings, fmodel is the forecast of a model, and fvl is 
the Value Line forecast. The values of the estimated coefficients 
βmodel and βv1 represent the information content of the Value Line 
and model forecasts. Table 7 presents the results of the regression 
for different models.  Except for the INDIV Genetic Programming 
two-quarters-ahead models, all Genetic Programming models seem 
to contain some information. However, the amount of information is 
no larger that that of the traditional models and is markedly less than 
that of Value Line. 
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Table 6 
Average Percentage Forecasting Error in Out-of-Sample Periods 

 
Panel A: All Firms 

 QUARTERS AHEAD 
MODEL 

GP 
PARAMETER 

CHOICE 
1 2 3 

VL N/A 13.1 14.1 14.8 
INDIV N/A 15.7 16.7 18.1 
BR N/A 15.0 16.6 17.1 
FOSTER N/A 14.6 13.8 14.0 
GW N/A 14.3 14.6 14.5 
AVERAGE OF VL & ARIMA 
MODELS 

N/A 13.0 13.5 14.4 

Objective Function: Sum of Absolute Errors 
X GLOB 15.2 15.9 16.3 
X INDIV 16.8 16.8 15.9 
VIBFG GLOB 13.9 13.7 15.4 
VIBFG INDIV 13.6 14.3 14.8 
VIBFGX GLOB 13.3 14.0 14.7 
VIBFGX INDIV 13.2 14.3 15.4 
GPVIBFG GLOB 13.3 13.6 14.9 
GPVIBFG INDIV 13.5 14.0 15.2 
GPVIBFGX GLOB 13.5 14.2 15.4 
GPVIBFGX INDIV 13.2 14.5 14.3 

Objective Function: Sum of Squared Errors 
X GLOB 16.2 16.6 16.2 
X INDIV 15.7 17.2 16.9 
VIBFG GLOB 13.1 14.6 16.2 
VIBFG INDIV 13.6 14.7 15.7 
VIBFGX GLOB 13.4 14.0 15.6 
VIBFGX INDIV 13.9 13.6 15.3 
GPVIBFG GLOB 13.3 14.7 16.5 
GPVIBFG INDIV 13.4 14.4 16.0 
GPVIBFGX GLOB 13.4 14.3 15.5 
GPVIBFGX INDIV 13.2 13.8 15.4 

 (Continued) 
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Panel B: Low-Volatility Firms 
 QUARTERS AHEAD 

MODEL 
GP 

PARAMETER 
CHOICE 

1 2 3 

VL N/A 10.1 12.2 12.5 
INDIV N/A 15.6 17.5 20.3 
BR N/A 14.0 15.9 16.9 
FOSTER N/A 12.0 11.4 10.9 
GW N/A 11.8 12.6 12.6 
AVERAGE OF VL & ARIMA 
MODELS 

N/A 10.5 11.7 12.7 

Objective Function: Sum of Absolute Errors 
X GLOB 14.8 14.5 15.0 
X INDIV 15.1 14.6 14.0 
VIBFG GLOB 10.7 12.0 14.4 
VIBFG INDIV 10.4 12.2 12.7 
VIBFGX GLOB 10.8 12.4 12.4 
VIBFGX INDIV 10.6 12.7 13.2 
GPVIBFG GLOB 10.9 11.9 13.3 
GPVIBFG INDIV 10.8 11.8 13.8 
GPVIBFGX GLOB 11.3 12.8 13.0 
GPVIBFGX INDIV 10.4 13.0 12.1 

Objective Function: Sum of Squared Errors 
X GLOB 15.8 16.3 15.4 
X INDIV 14.3 17.4 16.6 
VIBFG GLOB 11.1 13.7 15.0 
VIBFG INDIV 11.4 14.2 15.1 
VIBFGX GLOB 11.5 12.4 13.9 
VIBFGX INDIV 11.7 12.0 13.0 
GPVIBFG GLOB 11.1 13.5 16.0 
GPVIBFG INDIV 10.7 12.6 14.8 
GPVIBFGX GLOB 11.2 12.9 14.5 
GPVIBFGX INDIV 11.7 12.2 13.7 

(Continued) 
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Panel C: High-Volatility Firms 
 QUARTERS AHEAD 

MODEL 
GP 

PARAMETER 
CHOICE 

1 2 3 

VL N/A 15.4 15.6 16.6 
INDIV N/A 15.7 16.0 16.4 
BR N/A 15.8 17.0 17.3 
FOSTER N/A 16.7 15.7 16.4 
GW N/A 16.3 16.2 16.0 
AVERAGE OF VL & ARIMA 
MODELS 

N/A 15.0 14.9 15.8 

Objective Function: Sum of Absolute Errors 
X GLOB 15.5 17.0 17.2 
X INDIV 18.1 18.5 17.3 
VIBFG GLOB 16.3 15.0 16.2 
VIBFG INDIV 16.2 15.9 16.5 
VIBFGX GLOB 15.2 15.3 16.5 
VIBFGX INDIV 15.2 15.6 17.1 
GPVIBFG GLOB 15.2 15.0 16.1 
GPVIBFG INDIV 15.5 15.7 16.2 
GPVIBFGX GLOB 15.3 15.4 17.2 
GPVIBFGX INDIV 15.4 15.6 16.0 

Objective Function: Sum of Squared Errors 
X GLOB 16.4 16.9 16.8 
X INDIV 16.8 17.0 17.1 
VIBFG GLOB 14.7 15.4 17.2 
VIBFG INDIV 15.2 15.2 16.3 
VIBFGX GLOB 14.8 15.4 16.9 
VIBFGX INDIV 15.6 14.9 17.0 
GPVIBFG GLOB 15.0 15.7 16.8 
GPVIBFG INDIV 15.5 15.8 17.0 
GPVIBFGX GLOB 15.2 15.4 16.2 
GPVIBFGX INDIV 14.3 15.0 16.7 
We first searched for training parameters that resulted in formulas with the smallest 
forecast errors in a validation period. We then used these parameters to train formulas for 
the test periods.  Parameters were chosen in one of two ways: (1) GLOB – choose those 
training parameters that result in the smallest average error over all firms in the 
validation period or (2) INDIV: train individual models for each firm using a firm’s own 
best parameters in the validation period 
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Table 7 
Marginal Forecasting Power of Model X (GP ARIMA)  

and ARIMA vis-à-vis Value Line 
 SUM ABS. ERRORS SUM SQ. ERRORS  

 INDIV GP GLOB GP INDIV GP GLOBGP
INDIV BR FOSTER GW 

One Period Ahead 

βmodel 0.18 0.32 0.24 0.22 0.27 0.41 0.30 0.30 

(t-statistic) 2.00 3.53 2.49 2.50 2.87 4.16 3.00 3.11 

βvl 0.83 0.69 0.77 0.78 0.72 0.59 0.69 0.70 

(t-statistic) 9.40 7.63 8.06 8.72 7.29 5.89 6.61 7.04 

R2 0.88 0.89 0.88 0.88 0.88 0.89 0.88 0.88 

Two Periods Ahead 

βmodel 0.22 0.27 0.15 0.20 0.21 0.33 0.26 0.22 

(t-statistic) 2.68 2.78 1.56 1.95 2.28 2.95 2.28 2.13 

βvl 0.80 0.76 0.86 0.82 0.80 0.68 0.75 0.79 

(t-statistic) 9.45 8.02 8.93 8.38 8.54 5.93 6.38 7.34 

R2 0.89 0.89 0.88 0.89 0.89 0.89 0.89 0.89 

Three Periods Ahead 

βmodel 0.34 0.41 0.35 0.41 0.24 0.58 0.48 0.47 

(t-statistic) 3.78 3.92 3.56 3.94 2.98 4.63 4.02 4.22 

βvl 0.68 0.62 0.66 0.62 0.75 0.43 0.53 0.53 

(t-statistic) 7.49 6.02 6.63 6.05 8.53 3.37 4.36 4.59 

R2 0.87 0.87 0.86 0.87 0.86 0.87 0.87 0.87 

We estimated the following regression:  tfftz εββα +++= vlvlmodelmodel

where zt = realized earnings, fmodel = (non-value-line) forecast, f vl = Value Line forecast. The 
size and significance of the β coefficients are a measure of the information content of the 
forecasts. 

 
 
6. Conclusion 
 
The results of the study indicate that, as implemented, the Genetic 
Programming methodology is capable of producing forecasts and 
forecast combinations of average quality. However, it has no 
advantage over more traditional methods. Moreover, the marginal 
information captured by the Genetic Programming methodology is 
no larger than that captured by more traditional models. 
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